
FEDERAL AVIATION ADMINIST
SEPG

IN
T

E
R

FA
C

E
N

E
W

SL
E

TT
E

R
O

F
TH

E
 S

O
FT

W
AR

E
 E

N
G

IN
E

E
RI

N
G
 P

RO
CE

SS
 G

RO
U

P

VO
LU

M
E
 5

, N
U

M
BE

R
4

 �
 N

O
VE

M
BE

R
19

96

SOFTWARE TESTING OF

SAFETY CRITICAL

SYSTEMS – PART 1
by Patrick Brown

“The number of software defects
found in test is a pretty good indica-
tion of the number remaining.” Watts
Humphrey of the Software Engineer-
ing Institute found that his students
(inadvertently) injected one defect for
every ten source lines of code
(SLOC). Only about half of these
defects were found in test. In 1986,
Herbert Hecht reported better results:
for every million SLOC, there were
20,000 bugs and 90% were found by
conventional testing, so only 2000
remained. Even by this more optimis-
tic measure (using experienced
programmers), large real-time software
systems can expect a minimum of two
bugs remaining after test for each
KSLOC.

For safety-critical systems, that’s
bad news. It raises hard questions
about the trustworthiness of soft-
ware, the faith we put in testing, and
the methodologies we use for
ensuring high quality software.
Accidents due to latent software
faults, which have become manifest
sometimes years after a system has
gone into operation, are a ready
confirmation of these statistics. This
was the case with an X-ray treatment
device (the Therac-25) in which 6
people received massive radiation
overdoses before the problems were
found. A keen awareness of the need
for greater caution in developing
safety-critical software and the
resulting research has led to some
insights and improved approaches.

 As much as we may try, testing
can never be expected to remove all
defects in non-trivial software
systems. As an example, the Space
Shuttle’s flight software is extraordi-
narily carefully developed and tested.
But faults have slipped through and
been triggered during a mission by an
unexpected sequence of inputs.

Software allows a very large
number of possible inputs and an
even larger number of states. Exhaus-
tive testing is impractical or impos-
sible, at least within the remaining
lifetime of the universe. Software also
exhibits properties of chaos theory,
where minuscule changes in inputs
can trigger huge and almost unpre-
dictable changes in output. There-

fore, “boundary” value testing or
“range” testing of each input
separately, while necessary, is not
sufficient. Because software is
inherently non-linear as compared
with older, largely linear analog
systems, testing alone cannot ensure
the quality or safety of a software-
controlled system.

Some computer scientists would
argue that development testing is
largely wasteful and that the effort is
better spent on other parts of the
development process or on formal,
mathematically based methods.
Typically, development testing is
used to show that the software
satisfies requirements found in a
software requirements specification.
With a restricted set of inputs in an
artificially constrained, “standard”
environment, testing verifies that the
software responds as required or
expected. Commonly, during test in
the absence of a formal development
methodology, lots of errors are
uncovered and fixed. Since many of
those errors turn out to be require-
ments errors, such testing serves a
necessary and valuable purpose
which is not entirely eliminated by
using formal methods.

Why isn’t development testing
nearly enough? First, requirements
contain mistakes because of misun-
derstandings and ambiguities in
communication among users,
designers, programmers, and relevant
others. Nancy Leveson, in her book
Safeware - System Safety and
Computers, ©1995, states that almost
all safety-related software failures are
due to the implementation of wrong
requirements. Second, requirement
specifications often cannot capture
the richness of the user’s concept or
the operational environment.

No amount of verification testing
against requirements will reveal these
problems. This narrowly focused
testing usually does not rule out
unintended responses, that is,
software responding in unexpected
ways to unplanned input. For this,
there are other types of testing,
including operational T&E and
stress testing, that attempt to check
how the system will respond in the
real world.

Stress testing is particularly
valuable in checking what happens
when peak loads are reached or
exceeded, when ranges are exceeded
or timing is incorrect, or operators

continued on page 2

Page 2

○ ○ ○ ○ ○ ○ ○ ○ ○

INTERFACE

November 1996

is published quarterly by SEPG

DOT/FAA/AIT-5
800 Independence Avenue, SW

Washington, DC 20591
t

Chief Scientist for Software Engineering
Floyd Hollister (202) 267-8020

t

Editor
Norm Simenson (202) 267-7431

t

FAX (202) 267-5080

inter

FACE

�Software Testing...� continued from page 1

and maintainers take “shortcuts” or
make mistakes. It was a skilled operator
shortcut that triggered the Therac-25
overdoses. In one example of opera-
tional testing cited in Operational Test
& Evaluation, ©1986, by Roger T.
Stevens, two skilled systems personnel
pushed unanticipated combinations of
buttons and uncovered over 300
software errors. Actually, most such
errors are uncovered by using unskilled
operators.

One test area that is often over-
looked is the software or system
response when hardware fails. This is
especially unfortunate since most
modern systems tend to rely on software
to maintain safety—“fail-safe” or “fail-
soft”—when a hardware component
fails. Such software tends to be poorly
tested, if at all, because to do so may
require destructive hardware testing
and/or use of very expensive simulation.

Finally, because a major system
failure due to a particular combination of
lesser failures, faults, errors, and/or
events, including personnel actions, is
rare and testing resources are limited,
multiple failure testing almost never
occurs. Moreover, if we can assume that
any particular combination is worthy of
being singled out for testing, we can
alter the design to specifically guard
against it. That may be cheaper!

Yet nearly every catastrophe of
recent years was due to multiple failures
and extraordinarily unlikely events—
often involving failures of several safety
mechanisms or backups. [N.B. While the
probability of any specific rare sequence
may be vanishingly small, the probabil-
ity that some such sequence will occur
is very high!] Before occurrence, the
estimated likelihood of the Three Mile

Island event was less than once in
1,000,000 years. The Chernobyl event
was estimated to be far less probable
than that. In the latter case, what the
designers didn't foresee was the
technical ignorance of key operational
personnel, that all of the automatic
safety mechanisms would be disabled
because a test of emergency procedures
had been authorized(!), and that the last
reactor manual safing mechanism had a
design flaw which provided the final
element needed to trigger the accident.

Since complex software systems can
only be partially tested at best and this
is aggravated by schedule pressures and
limited resources, lessons learned on
previous systems should be used for
developing a practical testing strategy.
The best approach is to focus on
potentially high risk areas and code
critical modules first so they are avail-
able for testing longer. Another good
guideline is to base testing decisions on
what is truly important. What is high
risk or important can be very far from
obvious. For safety-critical systems, the
identification of such functions should
be based on hazard and technical risk
analyses, statistical sampling tech-
niques, and on user surveys, which will
be discussed in other articles.

Implicit in all of this is the notion
that test sequences must be carefully
planned. Experience on large projects
has shown that effective test planning
is the most significant phase of the
testing effort. Recording test planning
decisions is also important. Documenta-
tion should include not only what will be
tested, but also what will not be (or has
not been) tested. Typically, the latter is
not done. Such documentation is
particularly valuable for systems that are
expected to be periodically modified and
retested after delivery.

Testing should be planned as a
continuous process over the entire
product life cycle. When a software
fault does slip through a well-disciplined
development and testing process, it is
cause not only to fix the software fault,
but also to investigate and fix the test
planning or testing process fault which
allowed the software fault to slip
through. This ensures that quality is
built into the software up front and can
be maintained over subsequent product
improvement cycles.

These guidelines apply to any
computer-based system, but the testing
approach for safety critical systems
must go beyond this. More on this in
the next issue. n

OT&E P ROCESS

IMPROVEMENT
by Natalie Reed, ACT-200

As part of the William J. Hughes
Technical Center CMM-based Process
Improvement Initiative, the ATC
Engineering and Test Division, ACT-200,
is working with Crown Communications,
Inc., and Software Engineering Technol-
ogy, Inc., to develop a process improve-
ment plan for OT&E processes. The
plan will be based on an internal needs
analysis, a CMM assessment, and a
review of best practices in OT&E.

As FAA moves further into the
flexibility afforded by the new Acquisi-
tion Management Strategy, it will be
essential that a standard, tailorable
process exist for OT&E (as well as other
key FAA processes). A process must be
defined and under control before it can
be systematically improved. A baseline
in process performance permits ongoing
comparison between current and
historical performance, and between
business-as-usual and pilot approaches.

In this ACT-200 project, the
standard activities and work products
associated with OT&E are being defined
in terms of Objectives, Participants,
Entry Criteria, Tasks, Measures, Verifica-
tion, and Exit Criteria. Once the current
process has been accurately docu-
mented, specific improvements will be
planned. Improvements will be consid-
ered based on current concerns, a
recent independent CMM-based
assessment, and best practices in
industry and other federal agencies. n

Page 3

○ ○ ○ ○ ○ ○ ○ ○ ○

INTERFACE

November 1996

Letter from
the

to arrive at a “rational” strategy to fail-soft
or fail-safe. Obviously, because of cost, this is
possible only for the most critical software.
For the rest, we must rely almost exclusively
on testing—including the much maligned
“beta testing.”

This puts a premium on developing
architectures which can identify a critical
kernel requiring the most stringent and costly
techniques for development and assurance
against failure. All the rest can make do with
less costly techniques. I can get WINDOWS
95 for less than $200. But it still crashes
under heavy use about once a day. It has
hundreds of known anomalies, some which
Microsoft has no intention of fixing. Would
it be worth it to reduce the bug rate by 60% if
it raised the price to $200,000 per copy? We
need to be able to put a dollar value on system
and subsystem availability and produce
accordingly.

Norm

ERROR-FREE

SOFTWAREEDITOR
Why can't we improve our software

development processes to the point where—
using formal methods, for example—we can
develop (nearly) error-free software? Well,
we may actually approach this nirvana for
deterministic errors, but I would guess that the
probability that we will do as well for non-
deterministic errors is zero. (See “Heisenbugs
in the System” by Myron Hecht et al for an
explanation of deterministic and non-
deterministic errors.) We are increasingly
living in a world where multi-tasking, multi-
processing, multi-threaded, fully distributed
software is running on multiple processors
using fully democratic (or nearly so)
interprocess protocols.

The possibilities of “glitches” in such
systems are already astronomical and are
increasing rapidly! Our best defense is to
build-in fault tolerance which increasingly
relies on “expert systems” intelligence or
artificial intelligence to figure out what has
gone wrong, when it inevitably does, and try

SOFTWARE TEST

ENGINEERING
Carmen Trammell and Jesse Poore
Software Engineering Technology, Inc.

There are many ways to drive a
person crazy. One way is to expect him
or her to handle the combinatorial
explosion (i.e., to develop software test
plans) on the basis of personal experi-
ence and common sense alone.
• For software systems in which the

number of inputs in a usage session is
unbounded, it is impossible to test all
scenarios of use because the number
of scenarios is infinite. (Assume a
system with 2 possible stimuli, A and
B. Possible scenarios of use: A, B,
AA, AB, BA, BB, AAA, AAB, ABA,
ABB, BAA, BAB, BBA, BBB,
AAAA...ad infinitum)

• For software systems in which the
number of inputs in a usage session is
bounded, it is impractical to test all
scenarios of use because the number
of scenarios is astronomical. (Assume
a system with 20 possible stimuli
allowing a maximum of 10 inputs in a
usage session. Possible scenarios of

use: sessions of length 1 + sessions of
length 2 ...+ sessions of length 10 =
10,778,947,368,420.)

There is help.
Engineering is the application of

science to produce useful artifacts.
Software engineering is the application
of science to produce useful software.
So, what is the relevant science for
software testing?
• When a population is too large to

study, all one can do is study a
sample.

• All software testing is based on
sampling.

• Statistically correct sampling allows
valid inferences from testing to
operational use.

The appropriate science for soft-
ware test engineering is applied statis-
tics. DON'T STOP READING . Applied
statistics is not what you think. It is not
the arcane field that it may have seemed
to you in college. It is a world of useful
formalisms that make it possible to
answer questions about populations
that are too large to study exhaustively.

Test Design- How can I choose the
critical variables to apply in testing from
the many variables that influence

operational performance?
Rx- Use a combinatorial design—a

“fractional factorial” experimental
design—to vary several factors at once.
Or, use multi-dimensional scaling and
factor analysis to determine which
factors vary together and can be
combined in test design.

Optimal use of resources- How
can I plan testing such that the maximum
value is gained from limited test
resources?

Rx- Use Operations Research (OR)
techniques to define constraints and
objectives, and to optimize test plans for
the objectives subject to the constraints.
While the application of OR to software
engineering is still new, there is literature
available for the beginner in OR, and
there are some software tools which can
help.

Safety- How will this software
perform under hazardous usage condi-
tions?

Rx- Represent hazardous usage in a
Markov model of operational use, and
apply standard Markov calculations to
determine the probability of hazardous
event X in a single usage session, the
long-term occurrence rate of hazardous
event X, the average number of uses
between hazardous event X, the
probability of a given sequence of
events, and other performance charac-
teristics of the software under hazardous
operating conditions. [editor's note:
This can also help design. If hazardous
event X turns out to be too probable for
comfort, it is generally easy to insert a
“guard” into the design to block any
path to it. This prevents any known
way to generate event X. To guard
against the impact of event X, should it
occur by way of an unknown path,
additional safeguards can be inserted to
detect its occurrence and to limit its
impact.] The appropriate Markov
calculations are made relatively easily by
using any of a number of matrix algebra
CASE tools. [editor's note: Monte Carlo
simulation tools provide a powerful way
to simulate any Markov process and
generate statistics painlessly with as
little statistical error as you wish,
depending on the number of trials used.]

Reliability - What is the expected
reliability of this software under given
usage conditions (routine, non-routine,
safe, unsafe, mature, immature, etc.)?

Rx- Use a stratified sampling
strategy for random statistical test case
generation, and determine the levels of
reliability and confidence that may be

continued on page 7

Page 4

○ ○ ○ ○ ○ ○ ○ ○ ○

INTERFACE

November 1996

HEISENBUGS IN THE

SYSTEM
by Myron Hecht, Herbert Hecht,
Jady Handal, and Dong Tang

COTS systems have the potential of
significantly reducing lifecycle acquisi-
tion and operating cost, and may also
reduce program developmental risk. As
a result, they have become an increas-
ingly important part of large real-time
systems. However, as discussed, it is
also necessary to ensure that only
suitable COTS components are inte-
grated into mission critical systems, and
suitable COTS components may not be
available at an acceptable system life-
cycle cost.

The drawbacks of COTS compo-
nents and systems for safety critical
applications are unknown reliability and
unknown failure characteristics. A
related problem is that a high availability
requirement normally dictates a fault
tolerant system design to provide for the
needed redundancy and reliability. Few
COTS come so equipped.

Assessing the reliability of COTS
software is generally the most important
issue associated with the use of COTS
components or systems. Traditional
analytical reliability methods were
developed for random hardware failures
and are no longer adequate. A satisfac-
tory model of software failures is
essential to a system-level characteriza-
tion of both reliability and availability.
Unfortunately, no generally accepted
methodology of software reliability
prediction has emerged.

But, while software reliability
prediction methodology remains
questionable, software reliability
measurement methodology is currently
satisfactory. To a large extent, software
reliability measurement can use the same
concepts and theory as system reliabil-
ity life testing. Such reliability life
testing and measurement have a long
and established history in the nuclear,
aerospace, and DOD communities.

The underlying assumption in these
measurement-based approaches is that
the fundamental failure mechanisms are
triggered non-deterministically. Such
failures result in an unpredictable crash,
hang, or processing slow-down which
prevents the system from running
successfully to completion. Causes can
most often be traced to transient,
unpredictable, and infrequently occur-
ring conditions related to timing,
loading, or sequencing of events and/or

processes. (Because of the uncer-
tainty in their occurrence and the

difficulty of reproducing such
failures, they are frequently called

“Heisenbugs,” an evil pun based on the
name of the physicist who won fame by

formulating the uncertainty principle in
quantum mechanics.)

However, there is another class of
failure in which the software produces a
consistently unacceptable output as a
function of the same inputs and process
states, e.g., an air traffic conflict probe
algorithm may fail to detect a future
separation violation. This deterministic
failure may often be traced to a logic
fault in the code or algorithm, or an
incorrect input value provided to the
code. The root cause may be due to
defects in the system or software
requirements.

The techniques and methodologies
for estimating the probabilities of
deterministic system/software failures
are immature. It is tempting to assume
that an adequate testing program should
uncover them. But testing resources are
finite, and it is generally impossible to
provide sufficient time or money to
perform the level of testing needed to
uncover all such failures, even in
systems designed for high dependabil-
ity. There are serious deficiencies even
in systems and software which use a
formal requirements specification
language.

Therefore, when estimating software
failure rates, one must look at both non-
deterministic and deterministic failures.
If the proportion of deterministic failures
at the final stages of testing or integra-
tion, or in initial operation, is high, then
reliability predictions made exclusively
on the basis of non-deterministic failures
is likely to be poor.

Fault tolerance is generally imple-
mented using redundant subsystems,
and software which provides services
for duplicated transmission on
networks, health checking of the
active and redundant subsystems,
synchronization of data, and similar
functions. These services are far
removed from the normal application
function. For COTS components or
systems, they may have to be provided
either by the application system devel-
oper or by a third party vendor.

Assuring that the fault tolerance
provisions really work is extraordinarily
difficult. The challenge at the highest
level is to show that availability require-
ments are being met. More detailed
quantitative testing can identify errors

masked by the proper action of the fault
tolerant function, system bottlenecks, or
potential hazards. This can provide
insight for requirements or design
corrections.

A key parameter in assessment of a
fault tolerance system is the probability
of successful recovery given that a
failure has occurred. This parameter,
often called coverage, can best be
determined through a regime of highly
focused testing driven by thorough
system analysis, supplemented by
continuous data collection designed to
capture spontaneously occurring
failures. Such testing is different from
the “failure recovery” testing which is
usually performed as part of system
acceptance testing.

In failure recovery testing, failures
are usually simulated by disconnecting
communication lines, failing individual
software tasks, or powering components
down. However, in distributed process-
ing software systems, it is far more likely
that transient (interprocess) communica-
tions errors may occur, or that one or
more tasks running in one or more
processors may crash, hang, or other-
wise suffer degraded performance.
Simulating such failures generally
requires specially developed software
within the running system supplemented
by additional hardware and software to
capture and analyze this data. The
detailed techniques, which often go
under the name of “fault injection,” are
described in the literature (e.g., by the
authors). Quantitative analyses of fault
injection testing have been developed.

Obtaining adequate data from which
to assess reliability and availability is
critical, but can be very difficult to
implement in practice. It can signifi-
cantly add to the design complexity (and
cost) of operational software, or to the
constraints of an already expensive

testing program. Adequate data
collection means monitoring and
recording all events of interest

such as failures and recoveries of
components, and performance
parameters for the target system in

all operational regimes. Data must be
collected on all failure modes so that an
assessment of the importance of
deterministic failures can be made.

Measurements must be made
continuously for a sufficient period to
yield statistically significant data.
Operating logs should include informa-
tion about the location, time, and type of
the error, the system state at the time of
fault detection or operational failure,

continued on page 7

Page 5

○ ○ ○ ○ ○ ○ ○ ○ ○

INTERFACE

November 1996

As a Quality Assurance Specialist
for the government at Loral Air Traffic
Control in Rockville, I believe I have
gained some insights into the implemen-
tation process that are worth sharing
and will contribute to reduced risk
during the implementation phase.

While there are many activities
which can be used to validate require-
ments and to verify a design developed
from a set of requirements, unit level
testing and peer review are the first line
of defense for the implementers. Al-
though they are primarily intended to
identify problems in design implementa-
tion, they can also do an excellent job of
catching errors in design and require-
ments. String or thread testing of
several units (or a full object) to verify
one or a few functions or capabilities
can be seen as an intermediate step
between unit and full integration test
which is especially apt to identify design
and requirements errors. The risk at this
level is that inadequate testing or review
will allow many errors to slip through.
Ideally, all requirements, design, and
implementation errors should be caught
before full integration testing; otherwise,
schedules and cost are likely to be
seriously impacted. The objective of
integration testing is not to debug the
system, but to verify that there are no
unexpected interaction problems when
all of the functional threads or objects
are brought together and made to play in
the same arena.

Unit testing is planned to verify that
a unit (or component) performs its
intended design—that all outputs and
state changes are achieved as specified
over the range of inputs via interfaces
and internal state data. Verifying the

correct functioning of a unit is not
intended to be performed through an
exhaustive set of tests which exercises
every possible combination of inputs
and outputs. Unit testing is intended to
provide an objective demonstration of
the correctness of the unit and to
exercise all code and key states of the
unit (but not necessarily every path).
Unit test cases are developed and
evaluated using these criteria.

Risk may be mitigated with respect
to implementation by the development of
unit test plans and unit test cases which
adequately reflect design specifications
and user requirements, the key to which
is peer review. Unit test plans are
needed to motivate the

programmer to think ahead about
testing. Early on, the programmer must
identify external dependencies and the
level of effort needed to perform unit
tests. A good programmer will imple-
ment a unit so that it is easy to access
key state data during test or for other
purposes. Unit test cases should make
use of the best knowledge of software
engineering and test issues in general,
such as testing at boundary conditions,
and specific knowledge of the unit.
Peers can greatly assist by bringing the
knowledge of the programmer’s commu-
nity to bear on both the general and
specific issues. Peer review should be
approached as a game. The winner is
the one who, by general agreement,
contributes the most in producing a unit
test which achieves the maximum testing
thoroughness with the least effort.
People should be rewarded for figuring
out clever ways for “breaking the code”
or for spotting bugs in the code.

Once a unit is through testing, both
it and its unit test should be placed
under configuration control. As later
errors are discovered and corrected in a
unit, and change instruments (SPRs/
PTRs) are opened and closed, changes

EARLY TESTING
by Tom Gleason

to test cases must not be overlooked. A
change in the code may require some
change in the unit test to reflect a
changed result or to add a previously
omitted test case. The unit test must be
considered a part of the unit and must
always be an adequate test of the
current as specified unit. Risk is
mitigated by assuring that the test
cases, as well as the code and com-
ments, always reflect the current design
specifications. Change documentation
must include some indication that the
unit test has been separately reviewed,
and corrected if necessary. For future
defect prevention analysis, it may
include something about why the test

failed, if appropriate.

Peer reviews are the best way to
assure the adequacy and correctness of
test plans and cases. Peer reviews make
sure design specifications are properly
developed from the user requirements
and are properly implemented. After the
unit designer and programmer, peers
know the most about the specific
problems of the design and implementa-
tion and bring the most knowledge to
the unit development process.

The FAA quality reliability officers
(QROs) need to be actively involved in a
contractor’s peer review process for test,
which is fundamental to the quality of
the product produced and critical for
assuring product safety. This should
include attendance and participation in
requirements reviews and analyses,
design reviews and analyses, unit test
plan reviews, test case reviews, and
code inspections. It means that the QRO
must maintain a high level of technical
competence to be effective in assuring
that peer reviews accomplish their risk
reduction goals. Adequate training is
absolutely essential to maintaining skills
in this area. The QRO participation
needs to be viewed as a plus by all
levels of the contractor. n

LAST LAW OF PROGRAM
MANAGEMENT

We have plans for every
conceivable contingency.
What could possibly go wrong?

Page 6

○ ○ ○ ○ ○ ○ ○ ○ ○

INTERFACE

November 1996

Proper system design choices can
help to limit the types of testing needed
or restrict the need for intensive soft-
ware testing to a few modules. On the
other hand, some choices can constrain
the methods and approaches available
for use in downstream testing—
sometimes to the point of making the
system untestable or making the tests
prohibitively expensive. System
integration, installation, acceptance, and
operational tests involve all aspects of
the system: software, hardware, and
human factors. Careful planning and
lots of communication among all
participants will help to make these tests
maximally effective.

The role of software testing in the
overall system dependability effort is to
verify software functions and perfor-
mance and to assure robustness in the
face of abnormal conditions and events.
Exhaustive software testing is usually
not practical or practicable—testing
cannot prove the absence of faults.
While we can hope that software
improves as faults are detected and
removed, the reality is that the fault
removal process is likely to introduce
new faults. So, testing can never be a
substitute for choosing a fault tolerant
architecture, designing quality into a
product, or for stressing quality soft-
ware production techniques. Even
formal methods have severe limitations.
Analytical models generally do not exist
to predict the performance of software,
which exhibits strong properties of non-
linearity. Indeed, software behavior
often shows patterns of chaos theory:
minor differences in inputs or initial
conditions can produce disproportion-
ately large differences in outputs or end
conditions. Therefore, it is very difficult
to achieve high confidence in the
software through testing alone.

Many methods and strategies exist
to maximize the effectiveness of software
testing, e.g., testing at different levels
(unit, integration, and system), using a
combination of static analysis, structural
testing, functional testing, stress
testing, and statistical testing. Since
each strategy works best with certain
types of faults, a comprehensive testing
program combines different strategies at
different testing levels.

For product assurance, a regulator
is typically limited to auditing quality
assurance records of the results of
testing, but the regulator must also
assess the adequacy of the choice of
test strategies and range (coverage).

Regulating the Critical System
by J. Scott, G. Preckshot, G. Johnson, Lawrence Livermore National Lab

A critical system is one whose
failure or imperfect operation may
produce significant harm, including
death or destruction, to people or
property. There are few, if any, special
procedures or processes which can be
used to assure the correct operation of
such systems, but everyone involved at
every stage of their life cycle must take
every step possible to prevent failure.
While a little trite, it nevertheless bears
repeating: the price of safety is constant
vigilance. Regulators have a special role
in assuring constant vigilance of such
systems.

The system life cycle for digital
systems includes activities involving
hardware, human factors, and software
arranged into three, more or less parallel,
but often converging life cycles. They
share a common system architecture and
design, and converge for system test,
installation, acceptance, and post-
acceptance activities.

It is currently impossible to demon-
strate conclusively that a digital product
meets all of its quality and performance
requirements. Many assurance tech-
niques must be used throughout the
system life cycle to achieve high
confidence in the safety of a product.
As a practical matter, no single activity,
such as system or software testing, can
provide this level of confidence. It is
important that the assurance techniques
be effective: some time honored tech-
niques, such as a long history of fault
free operation of a system in a relatively
restricted environment tend to confer a
high level of confidence but are, in fact,
almost valueless. 10,000 repetitions of
the same test are generally far less
useful than one repetition each of 10,000
different tests.

Software testing activities are a
subset of software verification and
validation (V&V) activities which, in
turn, are a subset of overall system
dependability measures. Other software
V&V activities complement and influ-
ence software testing. See IEEE 1012-
1986 for an overview of software V&V
activities.

Dependability is a system issue.
Planning for dependability begins with
the selection of activities calculated to
detect and avoid faults in every phase of
the life of the system. The architecture
chosen and the design implemented
must provide for the mitigation of

anticipated failures through techniques
such as redundancy, diversity, and fault-
tolerant designs in which software plays
a major role. While particular errors and
failures cannot be predicted (if they can,
it is easy to provide design compensa-
tion), classes and categories can be.
These, or more properly their effects, are
guarded against by both built-in
safeguards and external procedures,
such as testing.

For example, if system elements are
reused, a component acceptance
process commensurate with target
component reliability and target system
dependability goals must be developed.
This should include the plans and
commitments for achieving dependabil-
ity. Like other product assurance
processes, the component acceptance
process cannot rely on a single tech-
nique.

All participants in the development
process should understand system
architectural and design choices, and
their implications. The regulator should
assess the impact of these early, crucial
choices on the target system’s depend-
ability. During the initial stages of
architectural selection and top level
design, the regulator should also plan
for subsequent reviews of selected
process and activity records to ensure
that planned activities are properly
implemented. The regulator should also
ensure that the architecture/design will
provide other evaluators of the system,
such as testers, with adequate access to
system operational parameters which
can provide assurance that all parts of
the system are operating as designed
under every conceivable operating/
testing condition.

Software testing is related to every
aspect of the system life cycle. The
allocation of system requirements to
software, the system hazard analyses,
and ensuring that the design provides
adequate access to operational data are
all early activities important to the
testing program. Requirements allocated
to software are the basis for tests of
essential functions and performance.
System hazard analyses generate
information on external threats and
abnormal conditions under which
system dependability must be verified.
This information is used to develop test
cases which address performance in off-
normal situations. continued on next page

Page 7

○ ○ ○ ○ ○ ○ ○ ○ ○

INTERFACE

November 1996

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

Tra
inin

g O
ppo

rtun
itie

s...

Capability Maturity Model (CMM) for
Software and Associated Key Process
Areas for Level 2
CMM for Software Acquisition and
Associated Key Process Areas for Level 2
People CMM
Open Systems, the Promises and the Pitfalls
Software Capability Evaluation Training

Software Risk Management
Requirements Management
Metrics
Clean Room
Software Development Cost and Schedule
Estimation
MIL-STD-498, Use and Tailoring Opportunities

The FAA SEPG has developed a training program consisting of the following topics. Classes are
to be offered periodically throughout the year. Please contact your organization�s SEPG member
for schedule and enrollment information or discussion of your software training needs.

n

n

n

n

n

n

n

n

n

n

n

This assessment focuses principally on
the critical aspects of the application
and the degree to which the proposed
testing strategy and coverage will verify
those qualities upon which regulatory
approval depends. The regulator must
anticipate which tests are most impor-
tant in satisfying safety concerns. This
means that a knowledge of the system
architecture and the results of hazards
analyses are crucial for deciding which
tests help demonstrate critical safety
attributes.

Since regulators work indirectly with
artifacts of a test process, solid docu-
mentation of all aspects and elements of
the test process and a solid configura-
tion management process is crucial for
regulators to carry out their function.

A compendium of LLNL work on
software processes for high integrity systems is

available at:
http://nssc.llnl.gov/FESSP/CSRC/CSR.html

The report,
A Proposed Acceptance Process

for Commercial Off-the-Shelf (COTS)
Software in Reactor Applications, and its

appendix,
Testing Existing Software for
Safety-Related Applications,

should be of particular interest to
readers.

Please contact Gary Lynn Johnson,
johnson27@llnl.gov,

or the authors, for more

information. n

�Heisenbugs in the System� continued from page 4�Software Test ENGINEERING�
continued from page 3 some history (i.e., sequence of immedi-

ately preceding states), and error
recovery information where applicable.
This normally requires built-in instru-
mentation of operational software
components, as well as special instru-
mentation packages associated with
exceptional or recovery event se-
quences.

Measurement based assessments
are not a replacement for other aspects
of the system engineering process. For
example, system level requirements
should specify minimum COTS perfor-
mance, such as response times or
maximum loads, and functional capabili-
ties. Maintainability requirements
should identify essential monitoring and
maintenance management capabilities.
Quality assurance requirements should
address the vendors’ system and
software development and/or integration
process maturity, and legal protections,
such as source code escrow. Safety
requirements may impose severe
constraints on COTS failure modes and
failure detection properties, or the need
for expensive backup equipment.
Finally, test and evaluation must be
capable of assuring that all requirements

allocated to the COTS are met. These
additional constraints and controls
are necessary to ensure that selected
COTS and NDI components may be

safely incorporated into ATC systems.

J. Handal (AND-8)
may be contacted at the FAA,

202-267-3241

M. Hecht, H. Hecht, and D. Tang
may be contacted at

SoHaR Inc. 8421 Wilshire Blvd., Suite 201,
Beverly Hills, CA 90211-3204 n

inferred for the software in field use from
the size of the test sample. Again, there
is help in the technical literature.

Retesting- How can I determine
how much testing needs to be done after
a change in code?

Rx- Use the statistical approach to
"combining information" across the life
cycle to determine how much new data is
needed to bring the new version of the
software up to the levels of reliability
and confidence of the previous version.

Everybody can't know everything.
Aviation specialists, software engineer-
ing experts, and statisticians need to
work together to address the monumen-
tal challenges in software testing. Too
many test professionals have only their
experience and common sense to use in
the awesome task of software testing.
Experience and common sense are surely
necessary, but they are far from suffi-
cient. The FAA mission to ensure
public safety will be best served by an
approach to software testing that is
based on sound science. n

LAW OF SCALE

If �scaling up� were indeed as simple as many
people make it out to be, then the Master

Engineer would have
designed us all as giant

amoebas.

�Regulating the Critical System�
continued from previous page

FEDERAL AVIATION ADMINISTRATION
SEPG

interFACE

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

In This Issue

1
 Software Testing of Safety Critical

Systems – Part 1

2
OT&E Process Improvement

3
Software Test ENGINEERING

3
Letter from the Editor:
Error-Free Software

4
Heisenbugs in the System

5
Early Testing

6
Regulating the Critical System

8
Conference Calendar

NEWSLETTER OF THE

SOFTWARE ENGINEERING

PROCESS GROUP

�

VOLUME 5, NUMBER 4
NOVEMBER 1996

CONFERENCE CALENDAR
Software Engineering Laboratory (SEL) Software Engineering Workshop
December 4-5
Code 552
Goddard Space Flight Center, Greenbelt, MD 20771
Contact: (301) 286-6347

Software Technology Conference
April 27-May 2
Contact: (801) 521-9055 or (801) 521-2822

Society for Software Quality (SSQ) Meeting
December 10 Rick Hefner, SE Technology: Year in Review, Maryland
January 14 Mark Servello, Why to NOT have a Software Assessment,

Virginia
January 27 Day Long Roundtable Network Security, Maryland
Contact: Chris Dryer (202) 767-2894

Federal Software Process Improvement Working Group (FEDSPIWG)
Held Monthly at NOAA

DOT/FAA/AIT-5
800 INDEPENDENCE AVENUE, SW
WASHINGTON, DC 20591

